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Abstract

Most models of the potential effects of climate change on forest growth have produced deterministic predictions.
However, there are large uncertainties in data on regional forest condition, estimates of future climate, and quantitative
relationships between environmental conditions and forest growth rate. We constructed a new model to analyze these
uncertainties along with available experimental results to make probabilistic estimates of climate change effects on the
growth of loblolly pine ( Pinus taeda L.) throughout its range in the USA. Complete regional data sets were created by
means of spatial interpolation, and uncertainties in these data were estimated. A geographic information system (GIS) was
created to integrate current and predicted climate data with regional data including forest distribution, growth rate, and stand
characteristics derived from USDA Forest Service data. A probabilistic climate change scenario was derived from the results
of four different general circulation models (GCM). Probabilistic estimates of forest growth were produced by linking the
GIS to a Latin Hypercube carbon (C) budget model of forest growth. The model estimated a greater than 50% chance of a
decrease in loblolly pine growth throughout most of its range. The model also estimated a 10% chance that the total regional
basal area growth will decrease by more than 24 X 10° m? yr~' (a 92% decrease), and a 10% chance that basal area growth
will increase by more than 62 X 10° m® yr™' (a 142% increase above current rates). The most influential factor at all
locations was the relative change in C assimilation. Of climatic factors, CO, concentration was found to be the most
influential factor at all locations. Substantial regional variation in estimated growth was observed, and probably was due
primarily to variation in historical growth rates and to the importance of historical growth in the model structure. © 1998
Elsevier Science B.V. ‘
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1. Introduction al.,, 1993). Over the last two decades, increasing
concern about the effects of anthropogenic stresses
on forest ecosystems has resulted in the formation of
coordinated research programs focused on acidic
precipitation and ozone (Fox, 1996). Most recently,
the potential effects of climate change on southern
" Corresponding author. Tel.: + 1-607-254-1216; fax: + 1-607- forests have been addressed by the Southern Global
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Pine forests of the southern USA are a crucial
forest resource, producing more than half of the
softwood forest products in the country (Powell et
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vice, a multi-year, multi-million dollar research pro-
gram (Mickler and Fox, in press). In order to inte-
grate the results of the diverse research conducted
within this program, and to identify future research
needs, an ecological regional assessment model is
required.

Several types of models have been used previ-
ously to assess the potential effects of climate change
on vegetation in the southern USA. At the global and
continental scale, models of the biogeography and
biogeochemistry of ecosystems have been used, for
example in the Vegetation /Ecosystem Modeling and
Analysis Project (VEMAP, VEMAP Members,
1995). Biogeography models are best for examining
broad-scale changes in vegetation type—for exam-
ple, temperate deciduous forests and C, grasslands.
Biogeochemistry models are designed to predict
changes in nutrient cycling and primary productivity.
Individual-based forest growth (gap) models such as
FORET, FORENA and ZELIG have been used to
predict changes in forest type throughout the eastern
USA; the use of this type of model to assess climate
change effects has been reviewed by Shugart et al.
(1992). In general, this type of model is most useful
for predicting broad-scale patterns in species associa-
tions over many centuries. To assess the risk posed
by climate change within the next 100 yr for impor-
tant species such as loblolly pine, there is a need to
model not only such broad-scale patterns but also the
direct effects of climatic change on tree growth rates.

A major limitation of existing ecological models
is that they typically produce deterministic results,
without any estimate of uncertainty. For issues such
as climate change effects on forest growth, there are
clearly large uncertainties in both the magnitude of
future climate change, and the magnitude of various
responses to a changed climate (Dixon and Wis-
niewski, 1995). Monte Carlo techniques have been
used successfully to address uncertainties in the in-
put values and parameters of forest growth models
(e.g., van der Voet and Mohren, 1994). Regional
ecological risk assessments must account for uncer-
tainty in spatial data as well as uncertainty in the
response of ecosystem components, such as the trees
is a forest, to stresses. Several investigators, notably
at the US Department of Energy’s Oak Ridge Labo-
ratory, have demonstrated over the last two decades
that it is possible to use Monte Carlo techniques to

address these uncertainties quantitatively (e.g., Gra-
ham et al., 1991; Dale et al., 1988).

For regional assessments, there are often insuffi-
cient data to parameterize existing models. Con-
versely, there may be experimental data germane to
the question that are not being used by an existing
model. We developed a new modeling approach to
analyze the potential effects of climate change on the
growth of loblolly pine using available research and
regional monitoring data. Our modeling system pro-
duces probabilistic estimates in order to account for
important sources of uncertainty in the model. This
task is accomplished by defining inputs to the model
and functional relationships within the model as
frequency distributions, and then using Monte
Carlo-type techniques to sample from these distribu-
tions. The result is a frequency distribution of possi-
ble estimates. We refer to the model output as
‘estimates’ rather than ‘predictions’ because of the
many sources of uncertainty in predicting climate
change effects. This terminology is similar to that
used by climate modelers, who use the term ‘projec-
tion’ for the output of general circulation models
(GCM).

2. Methods

Our modeling system is comprised of a geo-
graphic information system (GIS) and a probabilistic
forest growth model. The GIS serves to integrate the
regional data, facilitate the development of proba-
bilistic inputs for the forest growth model, and dis-
play the probabilistic results of the forest growth
model. The study area was the 12-state region of the
USA where nearly all loblolly pine ( Pinus taeda L.)
occurs. This area includes Texas, Oklahoma,
Louisiana, Arkansas, Mississippi, Alabama, Ten-
nessee, Florida, Georgia, South Carolina, North Car-
olina, and Virginia. There is a small amount of
loblolly pine in New Jersey and Maryland, but these
regions were not included in our analysis. To pro-
duce regional probabilistic estimates of the effect of
climate change, the forest growth model was run
using Monte Carlo-type techniques (for a review of
these techniques, see Morgan and Henrion (1990)).
A total of 150 simulations were run for each of 1169
30X 30 km grid cells in the 12-state region. The



P.B. Woodbury et al. / Forest Ecology and Management 107 (1998) 99-116 101

major steps required to construct the GIS and the
forest growth model are described below.

2.1. Regional data selection

2.1.1. Loblolly pine growth

Data on the growth rate of loblolly pine were
obtained from the Forest Inventory and Analysis
(FIA) survey (some details of these surveys can be
found in Hansen et al. (1992)). Data were selected
from survey plots consisting primarily of loblolly
pine in stands that were not logged or otherwise
substantially disturbed between consecutive surveys
(Dr. Steven McNulty, personal communication). The
most recent available survey data were selected for
all states, growth rates were based on the last com-
plete measurement interval available for a state (ap-
proximately 10 yr—exact dates differ among states).
This selection regime resulted in 615 plots for the
12-state region. Growth rates, stand density and basal
area were calculated.

2.1.2. Loblolly pine distribution

Data on the distribution of forest types were
obtained from a digital version of a map that classi-
fies forest types on a 1-km grid cell basis. This map
was produced in support of the 1993 Resources
Planning Act (RPA) update (Powell et al., 1993).
The map is derived from Advanced Very High Reso-
lution Radiometer data, FIA surveys, Thematic Map-
per data, and other sources, using methods described
by Zhu (1994) and Zhu and Evans (1992). For our
investigation, we examined only grid cells classified
as Loblolly—Shortleaf Pine.

2.1.3. Ozone exposure

Data on tropospheric ozone concentrations for
May through September, 1988—1991, were obtained
from the Aerometric Information and Retrieval Sys-
tem and represent nearly continuous measurements
of known accuracy. Ozone exposure was expressed
as ‘SUMO06’, the sum of all hourly average concen-
trations greater than or equal to 0.06 ul1-'. Values
were interpolated for the few days on which data
were not collected (Herstrom, A., personal commu-
nication). Monitoring sites within the 12-state region
and within neighboring states were used in order to
avoid artifactual edge effects during spatial interpola-
tion.

2.1.4. Climate scenarios

In order to meet the needs of forest growth mod-
els, regional scenarios of climate change should meet
several criteria. Estimates of precipitation, tempera-
ture, and other climatic variables should be produced
for all locations in the region. These estimates should
account for topographical effects, and physical con-
sistency should be maintained among climatic vari-
ables. All data should be interpolated to a single grid
cell size, including climate change projections from
GCMs that operate at different spatial resolutions.
The SGCP (among others) supported an effort to
produce such a data set in the VEMAP. The methods
used to develop this data set have been described
previously (Kittel et al., 1995). The VEMAP database
contains single-year steady-state climate scenarios
based on the results of four GCMs. These four
GCMs are: United Kingdom Meteorological Office
(UKMO, Wilson and Mitchell, 1987), NASA God-
dard Institute for Space Science (GISS, Hansen et
al., 1984), Oregon State University (OSU,
Schiesinger and Zhao, 1989), and Geophysical Dy-
namics Laboratory R30 [GFDL, Manabe and
Wetherald in Mitchell et al. (1990); Wetherald and
Manabe in Cubasch and Cess (1990)]. The rationale
for the use of these GCMs for this study region is
discussed by Cooter et al. (1993). In brief, they were
well documented model runs available at the time of
database construction. We selected this data set for
use in our modeling effort because it met the above
criteria.

Because GCMs are designed to study global rather
than regional processes, there. is greater uncertainty
in their projections for regions such as the southern
USA (Sulzman et al., 1995; Trenberth, 1997). Our
use of a stochastic scenario helps to account for
some of this uncertainty by using the projections
from several GCMs simultaneously. According to
the 1995 Intergovernmental Panel on Climate Change
(Houghton et al., 1996), recent projections of global
temperature increase with a doubling of CO, are
approximately one-third lower than the best estimate
in 1990. This is due in part to improvements in
modeling the radiative effects of clouds and the
effects of sulfate aerosols (Houghton et al., 1996).
Because the GCM model runs on which our scenario
is based were published in or before 1990, the
projected temperature increase may be somewhat
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Fig. 1. Estimated modal increase in mean annual temperature with doubled CO,. For future temperature, we used a probabilistic scenario
defined as a frequency distribution for each analysis cell. The modal value for each cell is shown. The regional average is 4.3°C and the

range is 3.0 to 6.3°C (see text for details).

overestimated. However, the consistent regional sce-
narios developed by the VEMAP were the best ones
for our purpose for the reasons mentioned above.
For our investigation, we constructed a probabilis-
tic future climate scenario based on four VEMAP
scenarios derived from the four GCM model runs
cited above. For each location in the study region,
the lowest, highest and middle (average of the re-
maining two values) ranked values were used to
create a triangular frequency distribution describing
estimated climate. Monthly data on precipitation,
solar radiation, and maximum and minimum air tem-
perature were obtained from the VEMAP database
for the base case (no climate change) and for the
climate change scenario. All VEMAP data are calcu-
lated for a grid cell size of 0.5 X 0.5 degrees latitude
and longitude. The mode of the temperature increase
for the climate change scenario is shown in Fig. 1.

2.2. Creation of geographic information system
All data were imported into a single database

using Arc/Info software (ESRI, Redlands, CA). Data
were converted to a common projection (Lambert

equal azimuthal). This projection was selected to
minimize the generation of errors in the area of data
features. The forest distribution data were already in
this projection, and other data were either in a geo-
graphic (latitude and longitude) projection or were
point locations, so there was little distortion when
converting them to another projection. For each type
of data, a grid with a cell size of 1 km was created.
Additional grids were created to represent the uncer-
tainty of each of several data types, as described
below. To supply data to the forest growth model,
data were aggregated into 30-km analysis cells.
However, data are stored at the | km resolution in
order that smaller analysis cells could be used in the
future if they are required.

2.3. Interpolation and uncertainty estimation

Our modeling strategy required that complete re-
gional data sets with estimated uncertainties be gen-
erated for each type of data. These data sets were
obtained by means of spatial interpolation, when
required. Methods of interpolation and estimation of
uncertainty in data are described below for each data

type.
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2.3.1. Loblolly pine growth

Growth at locations between FIA plots was as-
sumed to equal that of the nearest plot. No attempt
was made to use distance-weighted averages or other
spatial methods because examination of the data did
not suggest strong spatial auto-correlation in the
growth rate of loblolly pine among this subset of
FIA plots. Uncertainty was assumed to increase as a
linear function of distance from the nearest FIA plot,
We believe that this is a reasonable model, since it is
likely that spatial auto-correlation occurs at a scale
too small to be detected by the course scale of the
selected FIA plots.

2.3.2. Loblolly pine distribution

Since the forest distribution data provided com-
plete coverage of the region, no interpolation was
required. While some classification error may be
expected to occur with such a data set, we had no
estimate of such error and did not include it in this
analysis.

2.3.3. Ozone exposure

Ozone values were interpolated as the weighted
average of values from all monitoring stations within
300 km of each analysis cell. Weighting decreased
with the square of the distance from the station. For
the model presented here, interpolated ozone SUM06
values for each year from 1988—199] were averaged
to obtain a value for current exposure. Ozone con-
centrations are likely to increase with climatic change
(Ashmore and Bell, 1991). Because data on the
magnitude of this increase were not available, we
defined it to be uniformly distributed (to avoid more
stringent distributional assumptions) with endpoints
of a 20% to a 60% increase above current concentra-
tions.

2.3.4. Climate scenarios

No spatial interpolation was required since these
data provided complete coverage. Uncertainties in
weather data exist due to interpolation and averaging
error, yearly variation, and, particularly, uncertainties
in predicting climate change. We incorporated uncer-
tainty in climate change estimates by using a combi-
nation of output from four different GCM model
runs as discussed above. The VEMAP scenarios are
based on a doubling of tropospheric CO, concentra-

tion. We used a value of 360 pl |-! CO, for the
base case (current) condition. In order to include
some uncertainty in the estimate of future CO, con-
centration, we defined it to be uniformly distributed
between 648 and 792 ul 17! (ie., a doubling plus or
minu$ 10%).

2.4. Forest growth simulation

We created a simple annual Latin Hypercube
carbon (C) budget model in order to estimate changes
in forest growth rate. Because many investigations of
the effects of climate change are conducted at a
single tree scale (or smaller), we judged that an
individual-tree C budget would be the most tractable
means for integrating a variety of experimental re-
sults. Each result could be interpreted as influencing
the rate of some portion of annual C gain or loss. For
this reason, stand basal area growth data from the
FIA were transformed into values of C gain, loss,
and allocation for individual trees, as described be-
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Fig. 2. Flow chart of probabilistic forest growth model, Probabilis-
tic estimates of current carbon gain, loss, and allocation for
individual loblolly pine trees are modified by functions describing
the effects of changes in CO?, air temperature, and other factors
to produce probabilistic estimates of growth under a climate
change scenario. The inputs to the model are maintained in a
geographical information system, and the results are sent to this
system to generate a regional analysis.
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low. Then, experimental data were transformed to
stochastic functional relationships describing the ef-
fect of climatic factors such as air temperature and
CO, concentrations on C gain, loss and allocation
for individual trees.

We implicitly incorporated the effects of competi-
tion and mortality in individual tree performance by
using the historical rate of growth. Hence, our ap-
proach assumes that the influence of these factors on
growth will not change with alterations in climate.
This approach is reasonable because we are integrat-
ing experimental data on the physiological responses
of trees to climate change to produce an estimate of
the change in the instantaneous growth rate of
monospecific stands, or stands with small amounts of
other conifers present. The overall organization of
the forest growth model is shown in Fig. 2.

2.4.1. Historical growth

We assumed that without climate change, future
growth would be the same as has been measured
recently. For each of the selected stands in the
region, the following FIA stand-level data were used:
basal area, basal area growth rate, number of stems
in each of two size classes (less than or equal to 12,7
cm in diameter at breast height (DBH), or greater
than 12.7 cm DBH), height of the largest size class,
and stand quadratic mean stem diameter. Because
trees of different sizes allocate carbon differently, we
modeled five size classes for each stand. For model-
ing purposes, an individual tree (henceforth ‘repre-
sentative tree’) was used to represent each size class.
The historical growth rates of each size class within
each stand were estimated from total stand growth
based on an estimated distribution of stem basal
areas. These distributions were skewed; they had
ends based on likely size extremes (from stand
height); and had a central values based on average
stem area (from the quadratic mean diameter). Based
on preliminary results, extremely skewed distribu-
tions, such as the log-normal, can introduce bias in
the model. Therefore, for each stand we selected a
normal distribution with a standard deviation set as
one-quarter of the size range. Extreme values were
truncated from this distribution so that at it would
match the mean stem diameter specified by the FIA
data. We assumed that the diameter growth rate (not
basal area growth rate) was constant among size

classes, and selected a single diameter growth rate
value such that the sum of individual tree basal area
growth rates within a stand matched that of the FIA
data. The simulated responses for each representative
tree were then extrapolated to all trees of the stand in
the corresponding size class.

2.4.2. C budget

We assumed that climate change effects could be
expressed as alterations in the annual flux of C into
and out of individual trees. The annual individual
tree C budgets for the base climate scenario were
based on the relationship: (annual growth) = (gross
assimilation) — (leaf and root turnover) —
(maintenance + growth respiration). Total above-
ground growth (bole, leaves, and branches) was esti-
mated from the basal area growth data by means of
published allometric equations (Shelton et al., 1984,
Van Lear et al., 1984; Gower et al., 1994). Root
biomass was defined as a fixed value of 20% of
shoot biomass. Fine roots (2 mm or less) were
estimated to be a fixed value of 15% of root biomass.
Fine roots were assumed to turn over twice yearly
(Schoettle and Fahey, 1994) and leaves were as-
sumed to be held for 2 yr. To account for the loss of
organs due to wind, diseases, etc., we increased the
estimated net carbon gain required to produced coarse
roots, branches, and leaves by 5%. Half of the
biomass was assumed to be C. Hence the net annual
growth on a C basis could be calculated for fine
roots, coarse roots, bole, branches, and leaves for
representative trees. To estimate gross C allocation
to growing structures, growth respiration was as-
sumed to be a stochastic function of biomass. Specif-
ically, growth respiration was defined as a uniform
distribution between one-quarter to one-third of the
carbon content of biomass (Waring and Schlesinger,
1985; Ryan et al., 1994, 1995).

Gross annual assimilation was defined as the sum
of net daytime C uptake at the leaf level. Annual
maintenance respiration was defined as a function of
temperature, biomass, and plant part, using published
temperature response functions and respiration rates
(Ryan et al,, 1994). Maintenance respiration was
assumed to be 33 to 67% of gross annual assimila-
tion (Ryan et al., 1994, 1995). Because larger trees
have proportionately more tissue to maintain, they
were assumed to have proportionately greater main-
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tenance respiration (Ryan et al., 1994). If the bole
represented more than 80% of aboveground biomass,
maintenance respiration was defined as a uniform
distribution between 45 and 67% of gross annual
assimilation. If the bole represented less than 80% of
aboveground biomass, these values were 33 and
55%. The total annual C budget was calculated as
the sum of each of these pools of expended carbon.
To estimate the effects of climatic variables, the C
budget was then modified by project summary func-
tions as described in Section 2.4.3.

2.4.3. Project summary Junctions

The primary experimental data were from a num-
ber of investigations sponsored by the SGCP. A few
data from the literature were selected to fill gaps in
the results from the SGCP, primarily with respect to
allometry and respiration rates. Experimental mea-
surements of responses to climatic factors ranged
from CO, uptake of leaves to bole growth in mature
stands. Each selected experimental result was re-
duced to a function describing the effect of one or
more climatic factors on annual C gain, loss, or
allocation to bole growth (Table 1). These effects
were defined as probability density functions (PDFs).
Data from eight SGCP experimental research pro-
jects were included in this model, but some projects
examined more than one climatic factor (Table 1).
Literature data on base respiration rates and Q,,
values for various parts of the tree were used to
create a summary function describing the effect of
temperature on maintenance respiration (Ryan et al.,
1994).

Summary functions were developed from research
results based on three simplifying assumptions. First,
we assumed that changes in response variables such
as biomass or growth rate could be attributed to
annual C gain, loss, or altered allocation. Second, we
assumed that results collected at the branch or tree
scale could be extrapolated to the monospecific (or
nearly monospecific) stands and to a regional scale.
Third, we assumed that the effects of all climatic
factors (e.g., temperature and CO,) were indepen-
dent because the SGCP data that we used provided
no evidence of interactions. These assumptions were
consistent with our goal of integrating the results of
a group of diverse experimental results to produce a
regional assessment. The functions are summarized

105

in Table 1. The four general steps taken to produce
each summary function are presented below.

2.4.3.1. Step a. Identify appropriate data. We identi-
fied data in a publication that: (1) examined the
effects of climatic factors available in our regional
GIS, and (2) could be related to the C budget
framework of the model.

2.4.3.2. Step b. Transform climatic inputs. Data
available in the regional GIS were not always in the
same format as those used in an experiment. When
hecessary, we developed functions to estimate, for
example, from SUM04 to SUMO6. In such cases, we
increased the variability in the definition of input
values to reflect the uncertainty of such transforma-
tions.

2.4.3.3. Step c. Convert research result into a func-
tion. This was done in two steps. First, response
variables were transformed into an expression of C
gain, loss, or allocation to boles. Second, frequency
distributions were defined by including error terms
presented with the data. In general, normal distribu-
tions were used, although other distributions were
used as shown in Table 1.

2.4.34. Step d. Convert climate response into a
Junction. Steps a—c were repeated to produce fre-
quency distributions representing the effects of cur-
rent and future climate scenarios. The ratio of these
two distributions was used to define the relative
effect of climate change on each component of the C
budget. When sampling from the two distributions,
we assumed a moderate positive correlation between
the two distributions (r = 0.5). In some cases, data
were most appropriately summarized as a ratio be-
fore extrapolating to the C budget (step d before step
c).

We present below detailed descriptions of two of
these summary functions as examples. '

2.4.3.5. Summary function for Murthy et al. (1996).
Some of the following steps are shown diagrammati-
cally in Fig. 3.

The proportional increase in CO, uptake with an
addition of 175 ppm to the base climate (360 ppm)
was defined as a normal distribution with mean = 1.6



Table 1

Data sources used in functions relating climate factors to loblolly pine growth

Portion of Type of results Inputs to Components of summary function Source of data

carbon function

budget

Gain leaf CO, uptake ~ CO, at base [CO, I*, uptake ~ N (7.2, 0.9)"; at base [CO, ]+ 150, Alemayehu et al. (in press)
uptake ~ N (9.2, 1.1); at base [CO, ]+ 300, uptake ~ N (10.9, 1.3)

Gain seedling-stand CO, at {CO,] ~ 400, relative uptake ~ 1; at [CO,]= 800, rel. Groninger et al. (1996)

CO, uptake uptake ~ N (2.23, 0.35)

Gain leaf CO, uptake ~ CO,,H,0  at base [CO, ], uptake ~ N (3.1, 1); at base [CO, 1+ 175, Hennessey and Harinath (in press)
uptake ~ N (5.2, 2); at base [CO, ]+ 350, uptake ~ N (5.9, 1.3)

Gain leaf CO, uptake ~ CO, at base [CO, ]+ 175, relative uptake ~ N (1.6, 0.461); Murthy et al. (1996)
at base [CO, ]+ 350, rel. uptake ~ N (2.28, 0.594)

Gain leaf CO, uptake ~ CO, at [CO,]= 174, uptake ~ N (2.6, 1.03); at [CO,] = 363, Teskey (1995)

uptake ~ N (6.98, 1.6); at [CO,]= 501, uptake ~ N (9.98, 2.13),
at [CO,] = 690, uptake ~ N (13.31, 2.6); at [CO, 1= 910, uptake ~ N (16.48, 2.96)

Gain, tree diameter 0, for proportions of ambient O; of 0.5, 1, 1.7, and 2.5, Flagler et al. (1998)

loss growth seedling diameter growth was N (60.7, 4.7), N (58.3, 4), N (53.4, 4),

to R, N (49.3, 4.7) mm, respectively

Gain, circumference O;, rain, stem circumference growth = (slope of annual growth) McLaughlin and Downing (1996)
loss growth temperature X (days since mid-May)-+0.0036 X (3 days SUM04 {0, ]) X (moisture supply

to R, index)+0.0471 X (3 days ave. rainfall

in mm) +0.0458 X (3 days ave. max temp. 0900 to 2100) — (0.0000454 X 3 days

SUMO04 [0, X (3 days ave. max. temp. 0900 to 2100)
Loss respiration rates temperature  respiration was calculated using these uniform distributions Ryan et al. (1994)
to R, representing R, and Q)4 values, respectively: leaf ~ U (20,70),

U (2,2.3); branch ~ U (2,37), U (1.9,2.2); stem ~ U (1.8,8), U (1.9,2.2);

course root ~ U (4.2,29), U (1.9,2.2); fine root ~ U (23,240), U (1.8,2.1)
Loss stand volume temperature  change in growth (%), where AT = change in temperature Schmidtling (1994)
to R, from base case to climate change scenario, equals a normal distribution

with mean = 2.81 X AT —0.3X AT? and SD = 1.3X |AT|+2

“Base concentration of CO, = 360 ppm. All other CO, concentration values are in expressed in ppm.

®The notation N (7.2, 0.9) signifies a normal distribution with a mean of 7.2 and a standard deviation of 0.9. When similar summary functions exist for multiple research
projects, composite summary functions were produced by pooling through Monte Carlo sampling. For detailed examples of how these distributions were used to represent
experimental results, please refer to Section 2 and to Fig. 3Fig. 4. All rates of uptake of CO, are in umol m~2 s~!, unless they are expressed as a proportion of uptake at the
ambient concentration of CO,.

“Maintenance respiration.
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Fig. 3. Summary function data from Murthy et al. (1996). To
estimate uptake for carbon dioxide concentrations between + 175
and +350 (above the base case), a sample was taken from each
distribution, and a linear interpolation was performed between
these two samples. The two lines in the figure represent two such
interpolations representing two iterations of the Monte Carlo
procedure.

and standard deviation (SD) = 0.461. Uptake at an
addition of 350 ppm was defined as a normal distri-
bution with mean =2.28 and SD = 0.594. The un-
certainties in uptake at different CO, concentrations
were likely correlated. Therefore, we specified a
correlation coefficient of r= 0.5 between these two
distributions so that samples drawn from them (in
the next step) would be correlated. Relative co,
uptake was determined for each Monte Carlo itera-
tion by sampling a value for CO, concentration from
the climate change scenario and linearly interpolat-
ing between samples from the CO, uptake distribu-
tions described above. If the climate change scenario
specified a CO, concentration of greater than 710,
uptake was determined from the distribution repre-
senting an addition of 350 ppm.

2.4.3.6. Summary function for Flagler et al. (1998).
Some of the following steps are shown diagrammati-
cally in Fig. 4.

Experimentally elevated O, concentrations were
multiples of ambient concentration, including: 0.5, I,
1.7, and 2.5. For each of these treatments, we de-
fined a normal distribution of seedling diameter (in
mm) with the following means and standard devia-
tions, respectively: (60.7, 4.7), (58.3, 4), (534, 4),
and (49.3, 4.7). As discussed in the description of the
project of Murthy et al. (1996), adjacent pairs of

distributions were defined with correlation coeffi-
cients of r=0.5. Response to ozone was derived
from linear interpolation between samples from the
two distributions that bracketed the sample value.
The ozone response distribution was then divided by
the distribution of diameter growth with ambient
ozone to estimate relative diameter growth. Total
biomass growth was then estimated for each repre-
sentative tree from basal area growth using the same
allometric relationships used to establish the base C
budget. Total C gain for the ozone-exposed tree was
calculated by adding maintenance and growth respi-
ration as described above in Section 2.4.2 on base C
budget. The amount of gross C gain that was not
realized due to above-ambient ozone exposure was
calculated as the difference between the gross C gain
of a tree exposed to ambient ozone and that of a tree
exposed to elevated ozone. The amount of this unre-
alized gross C gain that represented increased main-
tenance respiration vs. decreased gross C gain was
specified as a beta distribution with parameters (6,
4): that is, a mean of 60% due to increased mainte-
nance respiration, and the balance due to decreased
gross C gain. The absolute values of growth were
then converted to relative values to produce a sum-

mary distribution of the effect of ozone on basal area
growth.
T T 1

05 1 17 25

Seedling diameter (mm)

Ozone C ation (multiples of ambient)

Fig. 4. Summary function data from Flagler et al. (1998). To
estimate the effect of ozone for intermediate values of ozone
concentration, linear interpolation was performed between the
closest two response distributions as shown in Fig. 3.
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2.4.4. Future forest growth

The growth rate of individual trees in response to
a changed climate was estimated by multiplying
components of the current C budget by the changes
estimated by the project summary functions. In some
cases, more than one function produced an estimate
of the relationship between a climatic factor and a
portion of the C budget. In such cases, a single
pooled estimate was produced by randomly sampling
among frequency distributions representing the dif-
ferent estimates. This process resulted in a single
frequency distribution describing the estimated rela-
tionship between each climatic factor and each por-
tion of the C budget. After any such pooling of
results, each function was applied to modify a por-
tion of the C budget. Values of annual maintenance
respiration and gross annual assimilation from the
base climate scenario were multiplied by the appro-
priate response functions, and were then summed to
give a new value for C allocated to growth under the
future climate scenario. This value was then multi-
plied by the distribution describing allocation to bole
growth. If any of the experimental data had indicated
a change in C allocation to the bole vs. other organs,
they would have been used here, but there were no
such data. Total growth was then reduced to account
for growth respiration, as described above for the
base C budget. Finally, the bole growth rate was
transformed to basal area growth rate via the allo-
metric equations cited above. Because the model
estimates the growth of individual representative
trees, we constrained the growth estimates to positive
values; i.e., negative growth rates were not allowed,
and small positive values were substituted instead.

2.4.5. Modeling uncertainty

A probabilistic estimate of growth rate was gener-
ated by selecting one value from the frequency dis-
tribution of each variable for each iteration of the
simulation. The results of a number of such iterations
form a frequency distribution that is a probabilistic
estimate of the effect of a climate change scenario on
forest growth rate. The relative influences of model
inputs or intermediate values (such as expected rela-
tive change in C budget) on model output were
determined by means of partial non-parametric corre-
lation coefficients (Morgan and Henrion, 1990). Be-
cause we determine influence in this manner, it

incorporates the effect of both the median value and
the dispersion of each stochastic function. Model
results were produced using a stratified sampling
method known as Latin Hypercube that systemati-
cally samples from all parts of the distribution. This
method has the advantage of requiring fewer repeti-
tions of sampling before achieving a stable output
distribution (Morgan and Henrion, 1990). The sofi-
ware used to create the forest model and perform
Monte Carlo simulations was Analytica (release 1.0,
Lumina Decision Systems, Los Gatos, CA).

2.5. Regional analysis

The forest growth model produced estimates on a
30X 30 km cell basis, as described above. These
results were then applied to each 1 km? cell within
the 30 X 30 km cell that contained growing loblolly
pine stands. Based on the RPA map, there were
230,106 1-km grid cells of loblolly—shortleaf pine in
the USA, nearly all of which lie within our 12-state
analysis region. Estimates were made for nearly all
of these 1-km? cells (226,390). For some cells, no
estimate was made due to missing data, location
outside the study region, or a record of a zero growth
for loblolly pine from the nearest FIA plot.

3. Results and discussion
3.1. Estimates of future growth

We used several approaches to present the proba-
bilistic results from the forest growth model on a
regional scale, as shown in Figs. 5 and 6 and Table
2. Fig. 5 shows the likelihood—expressed as a per-
cent chance—that loblolly pine growth rate will be
decreased by climate change. These results indicate a
high likelihood of decreased growth, ranging from
19 to 95%, throughout the 12-state region. Growth is
particularly likely to decrease in some portions of the
region, such as northeastern Georgia and northwest-
ern Louisiana.

While Fig. 5 shows the likelihood of a growth
decrease, it does not indicate the magnitude of this
effect; such results are shown in Fig. 6. Since the
estimates are probabilistic, there is no single esti-
mated value for any particular location that contains
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Chance of a
Growth
Decrease (%)

Fig. 5. Chance that climate change will decrease loblolly pine growth. The prediction for each 30 X 30 km cell is applied to all locations
(1 X 1 km) where loblolly pine forest occurs within that cell, resulting in a pattern of squares and rectangles apparent in the map.

loblolly pine forest. Fig. 6 shows three possible
effects of the climate scenario on loblolly pine basal
area growth as a percentage of the historical growth
rate. The three histograms show a worst case, most
likely case, and a best case estimate for all loblolly
pine throughout the region. These three histograms
represent the 10th, 50th, and 90th percentiles of the
frequency distribution representing the model esti-
mate for each location where loblolly pine occurs. In
the worst case estimate, climate change reduces
loblolly pine basal area growth substantially through-
out the region. There were no negative values for
estimated basal area growth because we constrained
the forest growth model to avoid such estimates, as
discussed above. In the most likely estimate, growth
would decrease in about half the locations, but would
increase substantially in the other half. The distribu-
tion appears to be bimodal—a large number of
stands would grow much more slowly (less than half

the historical rate) under the climate change scenario.
This bimodal distribution is probably due to the large
number of locations for which growth estimates were
constrained to positive values, resulting in a large
number of values just above zero.

In the best case estimate, the climate change
scenario would increase loblolly pine growth sub-
stantially in nearly all locations throughout the re-
gion. In many locations, growth rates were estimated
to double, triple or even quadruple. Such large in-
creases in growth may be unrealistic, even with a
low probability of occurrence. We did not constrain
the estimates of growth increases because there is
not an obvious choice of a cut-off point for defining
‘unrealistically’ rapid growth. The wide dispersion
of values of estimated ‘best case’ estimates are due
to the multiplication of uncertainties in the model
and the lack of constraint on these estimates. Hence
the ‘best case’ estimates should be interpreted as
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Fig. 6. Estimated change in loblolly pine basal area growth rate.
For each of the 1169 analysis cells in the region, the model
produced a probabilistic estimate (in the form of a frequency
distribution) of loblolly pine basal area growth rate under a
climate change scenario. These histograms show selected per-
centiles from the frequency distributions for each of the analysis
cells.

indicating that there is some chance of a substantial
increase in loblolly pine growth throughout much of
its range, but that there is much uncertainty about the
magnitude of such an increase.

In addition to relative changes in growth rates, it
is useful to examine the regional sums of the esti-
mated change in total annual basal area growth as
shown in Table 2. These results indicate that under

Table 2
Predicted change in regional loblolly pine basal area growth

the most likely case, there will be a slight decrease in
growth throughout the region as a whole. Although
the most likely effect of climate change will be a
slight decrease in growth, there is a chance of either
a large decrease in basal area growth, or a large
increase in growth, as discussed above, and shown in
Table 2.

Most of the experimental data used in the forest
growth model (Table 1) showed increases in C as-
similation due to increased CO, or increases in
maintenance respiration due to increased tempera-
ture. Hence, this model represents a balance between
increased growth due to CO, and decreased growth
due to temperature. This balance is the reason for the
lack of a large effect of climate change on the
midpoint of the distribution of estimated growth rate.
In previous analyses of a climate change scenario
with a larger temperature increase, our model esti-
mated a greater likelihood of growth declines (Smith
et al., 1998). The importance of these two responses
has been found in other models: changes in CO, and
temperature were estimated by several diverse mod-
els to be important direct influences of climate change
on forest productivity in the southern USA, as re-
viewed by Weinstein et al. (1998).

The wide range of possible effects shown in Fig.
6 and Table 2 is a result of including in our model
estimates of uncertainty in measurements of regional
factors such as air temperature, as well as uncertainty
in the effects of climate change on loblolly pine
growth. Areas such as southcentral Alabama and
eastern Texas have some of the lowest estimated
growth rates in the worst-case result, as well as some
of the highest estimated growth in the best-case
result (Fig. 7 ). These results indicate that uncer-
tainty about the effect of climate change on basal
area growth rate is greater in these portions of the
region. The locations that are most likely to experi-
ence a decline in growth are not entirely coincident

Type of prediction Percentile of distribution of predicted values

Change in growth rate (10* m? yr™') Percent change in growth rate

Worst case 10th
Most likely 50th
Best case 90th

— 24,000 -92
—-60 -02
+63,000 +142
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Fig. 7. Uncertainty in estimated loblolly pine growth rate. This map shows the uncertainty in basal area growth rate calculated as the
difference between the 90th and 10th percentiles of predicted growth after climate change (m? ha~! yr~ "),

with those that have the greatest uncertainty in the
estimated growth rate. For example, there is substan-
tial uncertainty about the effect of climate change on
loblolly pine growth rate in southcentral Alabama,
but this area is not one of those most likely to
experience a growth decrease (Figs. 5 and 7). Fig. 7
demonstrates a benefit of combining probabilistic
and regional analyses—it may be useful to identify
locations for which our ability to estimate the effects
of a stressor are most limited.

3.2. Factors influencing estimated growth

The above tables and figures illustrate the esti-
mated effect of a climate change scenario on loblolly
growth rate. An equally important goal of our model-
ing approach is to identify the climatic factors that
have the greatest influence on the estimated growth
rate at each location throughout the region. Before
discussion of these resuls, it may be helpful to point
out how our approach differs from sensitivity analy-

sis, which is also used to examine the influence of
model input values and parameters. While sensitivity
and uncertainty analyses are both concerned with
uncertainty in model parameters, they focus on dif-
ferent issues. Sensitivity analysis is concerned with
the propagation of errors due to deterministic, but
unknown, model parameters. Uncertainty analysis
treats selected parameters as uncertain, and examines
the influence of this uncertainty on model predic-
tions. Sensitivity analysis is commonly used to as-
sess the importance of model parameters. However,
sensitivity analysis typically modifies a single pa-
rameter at a time, failing to address interactions of
different factors within the model, although this tech-
nique has been extended to examine changes in
several parameters simultaneously, and interactions
among them (e.g., Williams and Yanai, 1996). Un-
certainty analysis has the advantage of simultane-
ously treating a large number of parameters as
stochastic, and hence all possible interactions among
stochastic variables are examined. Additionally, be-
cause appropriate frequency distributions are se-
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Table 3
Influence of climatic variables and model summary functions

Description of probabilistic® variable

Rank of influence® (high value = more influence)

Number of probabilistic influences®

Climatic factors

Future CO, 72
Future precipitation 39
Future temperature 22
Future ozone 2.1

Summary model functions

Future carbon assimilation 9.0
Current carbon assimilation 7.0
Future respiration 6.8
Current respiration 4.2
Future carbon allocation 2.7

31
14
15
14

*Probabilistic variables are those represented by probability density functions.

®Influence was measured as the rank correlation coefficient between the PDFs representing a climatic factor or a function and the PDF
representing the predicted loblolly pine growth rate. Thus ‘influence’ incorporates the effect of both the median value and the dispersion of
the climatic factor or the summary model function. The data in this column are the average rank values throughout the range of loblolly

pine.

“All climatic factors are model inputs, therefore they cannot incorporate other probabilistic influence. However, summary model functions
include the influence of multiple model inputs and other model functions. Variables may influence more than one summary model function,

hence they may be counted more than once in this column.

lected for each stochastic variable, the ‘parameter
space’ of the model is explored more appropriately
than even in a multiple-factor sensitivity analysis, in
which typically all values within a range are equally
likely to be used. Our model is unusual in that we
perform the analysis for a large number of grid cells
throughout the region of interest. Hence we produce
a probabilistic analysis in two dimensions, in the
same spirit as has been recommended for ‘state of
the art’ risk assessments (Hoffman and Hammonds,
1994). For each individual cell in the region, an
uncertainty analysis is performed. All of these analy-
sis cells together form another distribution, analo-
gous to a population of individuals. This approach
allows us to examine spatial patterns in the influence
of different climatic factors as well as functional
relationships within the model.

We examined the influence of uncertainty in two
types of variables: (1) climatic factors such as future
estimates of CO,, precipitation, ozone, and tempera-
ture, and (2) summary functions within the forest
growth model. Summary functions are those that
may incorporate the results of multiple research pro-
jects, which may also be represented as stochastic
functions. These summary functions, along with the
number of stochastic functional relationships that

influence these summary functions, are shown in
Table 3. By examining the influence of these sum-
mary functions, we can determine which functional
relationships within the model are most important.
The capability to examine the influence of uncer-
tainty in defining functional relationships between
climatic factors and forest growth response is partic-
ularly important for modeling the effects of climate
change, for which thorough validation of any model
will not be possible until after climate change has
occurred. Inclusion of uncertainty into the model
structure in this fashion promotes insight into which
uncertainties are most important, and hence should
be targets of future experimental and modeling in-
vestigations.

The most influential factor for all locations was
the relative change in C assimilation under the cli-
mate change scenario (Table 3). As mentioned above,
we used our model in a previous investigation to
examine the effects of a more extreme temperature
increase (5 to 8°C, UKMO model) throughout the
region (Smith et al., 1998). In this high-temperature
scenario, we found respiration to be the most influen-
tial summary function in many locations throughout
the region. With the less extreme temperature in-
crease in the current scenario, respiration had much
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less influence, as indicated in Table 3, and C assimi-
lation was the most influential factor.

Although we can examine the influence of uncer-
tainty in many of the assumptions within the model,
we cannot examine factors that are not included in
the model. As mentioned above, inter-tree competi-
tion and mortality are included implicitly by means
of historical growth rates, but possible influences of
climate change on these factors are not modeled.
Similarly, the model neither addresses the influence
of changes in radiation on regional water balance,
nor changes in pest population dynamics. Hence, we
cannot determine from our analysis how important
such factors may be in estimating the response of
loblolly pine to a changed climate. Changes in com-
petition, mortality, and species migration will be
important over centuries. However, as discussed
above, our goal was to integrate the results of a
specific body of research, which focused primarily
on physiological responses of a single species rather
than population dynamics. Hence, we chose to model
effects on instantaneous growth rate after a doubling
of CO,, and to model monospecific stands, or those
with relatively small amounts of other pine species,
which may be expected as a first approximation to
have similar physiological responses as loblolly pine.

As shown in Figs. 5 and 6, and Table 2, there is
substantial regional variability in the estimated ef-
fects of climate change on loblolly pine growth.
Uncertainty in estimated growth is quantified as the
difference between the best case and worst case
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Fig. 8. Estimation uncertainty increases with historical growth
rate. Uncertainty in estimated growth is quantified as the differ-
ence between the best case and worst case estimates.

estimates. As shown in Fig. 8, loblolly pine stands
with greater historical growth rates tended to have
greater uncertainty in the estimated growth rate un-
der climate change. The relationship shown in Fig. 8
suggests that historical growth rate is quite influen-
tial in the model. Such influence is to be expected
since the model is based on modifying historical
growth rate by means of functions describing climate
change effects.

The task of estimating climate change effects on
forest growth is complex due to the numbers of
ecological interactions, the long time period of ef-
fects, and uncertainties about both future climate and
ecological effects. In the model described here, we
extrapolated from a body of experimental data using
a C budget approach to produce probabilistic re-
gional estimates. As mentioned above, we assumed
that short-term, tissue-specific measurements could
be extrapolated to estimate the annual growth trees
and stands. Our goal was to create a tractable model
structure that would focus attention on quantifying
the uncertainties in estimating the regional effects of
multiple climatic factors on forest growth based on a
select body of experimental research. As in any
modeling effort, we were not able to represent all of
the potentially important processes. By focusing our
efforts on C, we did not incorporate possible changes
in other factors such as nitrogen and water availabil-
ity in forest soils. Nitrogen deposition, transforma-
tion, and uptake are likely to change under future
climatic conditions, and may affect the response of
forests to increased CO, and temperature. Total
annual precipitation and its distribution through the
year, especially late in the growing season, affect
loblolly pine productivity. By focusing on estimating
the growth rate of a single species, we did not
examine interactions with other plant or pest species.
We did not incorporate genetic variation, except
indirectly if such variation was included in the exper-
imental data. We also did not attempt to model the
migration of loblolly pine over decades and centuries
in response to a changed climate. Despite such limi-
tations, we propose that this methodology can focus
an assessment on the most important issues in a
complex system. For example, while ozone has been
demonstrated to decrease loblolly pine growth, our
results suggest that its effect is much less than that of
other climatic factors.
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Models of forest growth may be constructed at
many scales for many purposes, ranging from de-
tailed physiological models that describe a single
tree. to global vegetation models. We believe that the
type of model we have constructed is useful for
integrating existing information from regional sur-
veys and experimental investigations to produce eco-
logical risk assessments that are useful to policy and
decision makers. Historically, assessments of the
effects of stresses on forests have often taken the
form of a lengthy report delivered to policy makers.
However, such an approach was criticized when used
in the National Acidic Precipitation Assessment Pro-
gram (for example, Loucks, 1992; Russell, 1992;
Schindler, 1992). Such an approach does not guaran-
tee that research results have been synthesized, nor
that uncertainties in scientific understanding have
been systematically addressed. For such complex
topics, we believe that modeling approaches such as
the one we have described can improve assessments
by integrating pertinent experimental research find-
ings, summarizing what is known, and identifying
key scientific uncertainties.

4. Conclusions

Based on a climate change scenario derived from
the results of four GCMs, our model estimated that
loblolly growth will likely decrease slightly through-
out its 12-state range. However, due to large uncer-
tainties in both climate factors and the influence of
these factors on forest growth, there is a substantial
chance of either a large decrease or a large increase
in loblolly pine basal area growth rate under future
climate conditions. We also determined which cli-
matic factors and components of tree growth had the
most influence on the predicted growth rate. The
most influential factor at all locations was the rela-
tive change in C assimilation. Of climatic factors,
CO, concentration was found to be the most influeri-
tial factor at all locations. Substantial regional varia-
tion in estimated growth was observed, and was
probably due primarily to variation -in historical
growth rates and to the importance of historical
growth in our model structure. The estimate of future

loblolly pine growth rate was more uncertain for
stands with historically rapid growth rates.
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